Safety Assessment of Hydroxyethyl Urea
As Used in Cosmetics

Status: Draft Final Report for Panel Review
Release Date: November 9, 2018
Panel Meeting Date: December 3-4, 2018
Memorandum

To: CIR Expert Panel Members and Liaisons
From: Alice Akinsulie, Scientific Analyst/Writer
Date: November 9, 2018
Subject: Draft Final Safety Assessment of Hydroxyethyl Urea as Used in Cosmetics

Enclosed is the Draft Final Report of the Safety Assessment of Hydroxyethyl Urea. (It is identified as hyurea122018rep in the report package).

The Panel reviewed this document for the first time at the September 2018 meeting, and determined that the available genotoxicity, dermal, inhalation, reproductive/developmental toxicity, and irritation/sensitization data were sufficient to issue the conclusion that Hydroxyethyl Urea is safe in the present practices of use and concentration described in the report when formulated to be non-irritating. Carcinogenicity data are lacking. However, because the genotoxicity studies were negative and there are no structural alerts, the Panel was not concerned that Hydroxyethyl Urea had carcinogenic potential. Also, because the potential exists for dermal irritation with the use of products formulated using Hydroxyethyl Urea, the Panel specified that products containing Hydroxyethyl Urea must be formulated to be non-irritating.

Council comments received prior to the September 2018 meeting are included in the packet [hyurea122018pcpc_1]. In addition, Council comments regarding the Tentative Report were received and addressed [hyurea122018pcpc_2].

Also included in this packet are the flow chart [hyurea122018flow], CIR report history [hyurea122018hist], ingredient data profile [hyurea122018prof], literature search strategy [hyurea122018strat], 2018 FDA VCRP data [hyurea122018FDA], and transcripts from the September 24-25, 2018 CIR Expert Panel meeting [hyurea122018min].

The Panel should carefully review the Abstract, Discussion, and Conclusion of this safety assessment. If these are satisfactory, the Panel should issue a Final Report.
SAFETY ASSESSMENT FLOW CHART

INGREDIENT/FAMILY: Hydroxyethyl Urea

MEETING: December 2018

<table>
<thead>
<tr>
<th>Public Comment</th>
<th>CIR</th>
<th>Expert Panel</th>
<th>Report Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority List</td>
<td>INGREDIENT</td>
<td>PRIORITY LIST</td>
<td></td>
</tr>
<tr>
<td>SLR</td>
<td>June 22, 2018</td>
<td>Draft Report</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>IDA Notice</td>
<td>IDA</td>
<td>TR</td>
</tr>
<tr>
<td>Draft TR</td>
<td>Table</td>
<td>Different Conclusion</td>
<td></td>
</tr>
<tr>
<td>Tentative Report</td>
<td>Oct 15, 2018</td>
<td>DRAFT TENTATIVE REPORT</td>
<td></td>
</tr>
<tr>
<td>Issue TR</td>
<td>Draft FR</td>
<td>Table</td>
<td>Final Report</td>
</tr>
<tr>
<td>PUBLISH</td>
<td>Final Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CIR History of Hydroxyethyl Urea

June, 2017 – Hydroxyethyl Urea was added to the Priority List

June 21, 2018 – A Scientific Literature Review (SLR) was issued

September 24-25, 2018 – Panel examined Draft Report. The draft report also contains methods of manufacture impurities data, and comments that were received from the Council that has been addressed. The Panel was concerned that the potential exists for dermal irritation with the use of products formulated using Hydroxyethyl Urea. The Panel issued a tentative report for a 60-day comment period with the conclusion that Hydroxyethyl Urea is safe in cosmetics in the present practices of use and concentration described in the safety assessment when formulated to be non-irritating.

December 3rd-4th, 2018 - Panel evaluates the Draft Final report.
Data Profile on Hydroxyethyl Urea – December 3rd-4th, 2018 Panel – Alice Akinsulie

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyethyl Urea</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

“X” indicates that data were available in a category for the ingredient.
Hydroxyethyl Urea

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS #</th>
<th>InfoB</th>
<th>SciFinder</th>
<th>PubMed</th>
<th>TOXNET</th>
<th>FDA</th>
<th>EU</th>
<th>ECHA</th>
<th>IUCLID</th>
<th>SID S</th>
<th>ECETO C</th>
<th>HPVIS</th>
<th>NICNAS</th>
<th>NTIS</th>
<th>NTP</th>
<th>WHO</th>
<th>FAO</th>
<th>NIOSH</th>
<th>FEM</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyethyl Urea</td>
<td>2078-71-9</td>
<td>1/1</td>
<td>308/</td>
<td>275</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>1320-51-0</td>
<td>1/1</td>
<td>374/</td>
<td>2/0</td>
<td>1/0</td>
<td>1/1</td>
<td>2/0</td>
<td>0/0</td>
<td>0/0</td>
<td>6/0</td>
<td>1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Search Strategy
- **[document search strategy used for SciFinder, PubMed, and Toxnet]**
- **[identify total # of hits / # hits that were useful]**

Distributed for comment only -- do not cite or quote
Typical Search Terms
2078-71-9, 1320-51-0, Hydroxyethyl Urea, Urea, (2-Hydroxyethyl), Monoethanolurea, Urea, (beta-Hydroxyethyl)urea

LINKS

Search Engines
- Toxnet (https://toxnet.nlm.nih.gov/); (includes Toxline; HSDB; ChemIDPlus; DART; IRIS; CCRIS; CPDB; GENE-TOX)
- Scifinder (https://scifinder.cas.org/scifinder)

appropriate qualifiers are used as necessary
search results are reviewed to identify relevant documents

Pertinent Websites
- wINCI - http://webdictionary.personalcarecouncil.org
- FDA databases http://www.ecfr.gov/cgi-bin/ECFR?page=browse
- FDA search databases: http://www.fda.gov/ForIndustry/FDABasicsforIndustry/ucm234631.htm;
- GRAS listing: http://www.fda.gov/food/ingredientspackaginglabeling/gras/default.htm
- SCOOGS database: http://www.fda.gov/food/ingredientspackaginglabeling/gras/ncogs/ucm2006852.htm
- Indirect Food Additives: http://www.accessdata.fda.gov/scripts/fdcc/?set=IndirectAdditives
- Drug Approvals and Database: http://www.fda.gov/Drugs/InformationOnDrugs/default.htm
- FDA Orange Book: https://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm
- (inactive ingredients approved for drugs: http://www.accessdata.fda.gov/scripts/cder/iig/
- HPVIS (EPA High-Production Volume Info Systems) - https://ofmnext.epa.gov/hpvis/HPVISlogo
- NIOSH (National Institute for Occupational Safety and Health) - http://www.cdc.gov/niosh/
- NTIS (National Technical Information Service) - http://www.ntis.gov/
- NTP (National Toxicology Program) - http://ntp.niehs.nih.gov/
- Office of Dietary Supplements https://ods.od.nih.gov/
- FEMA (Flavor & Extract Manufacturers Association) - http://www.femaflavor.org/search/apachesolr_search/
- ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) - http://www.ecetoc.org
- International Programme on Chemical Safety http://www.inchem.org/

- www.google.com - a general Google search should be performed for additional background information, to identify references that are available, and for other general information

Fragrance Websites, if applicable
- IFRA (International Fragrance Association) – http://www.ifraorg.org/
- Research Institute for Fragrance Materials (RIFM)
Hydroxyethyl Urea - September 2018 Meeting

Day 1- Dr. Belsito’s Team

DR. BELSITO: Hydroxyethyl urea. This is the first time we’re seeing this. It’s used as a humectant in hair conditioning and it’s a standalone, right?

DR. LIEBLER: Yes.

DR. BELSITO: Any concern with the monoethanolamine residues? It says, lactic acid is added to neutralize ammonia and monoethanolamine. No?

DR. LIEBLER: I didn’t flag that as an issue. I had, overall favorable safety profile, low dermal tox mitigates concern about systemic effects from skin absorption. Genotox was okay. Lack of carcinogenicity data okay given lack of genotox and lack of structural alerts.

DR. BELSITO: I said, safe as used, formulated to be non-sensitizing.

DR. LIEBLER: Yes, that was my question, is to determine were the dermatologists okay with the sensitization data as is?

DR. BELSITO: Yes, I mean the guinea pig maximization test was neat. It was negative.
DR. KLAASSEN: It is a slight irritant; I don’t know if we want to say anything about that.

DR. LIEBLER: I also noted that despite the similarity to hydroxyurea, which is a DNA synthesis inhibitor that acts by inhibiting mononucleotide reductase, hydroxyethyl urea lacks key structural features required for inhibition. Even though it looks like hydroxyurea, it’s different enough that it shouldn’t present that problem. Yeah, I thought safe as used.

MS. FIUME: Dan, is that something for the discussion?

DR. LIEBLER: Yeah. I wrote some text in my note here, so that can be developed.

DR. BELSITO: Do we need to say anything about amine contamination in the discussion?

DR. LIEBLER: It’s funny, I didn’t notice that.

DR. BELSITO: Again, it just said that things were added to remove monoethanolamines.

DR. LIEBLER: Those are volatiles. See, it says by sparging with nitrogen, so those are really volatiles that would -- I mean, you could certainly add it to the discussion, but I wouldn’t consider it a real oversight if
you didn’t.

DR. BELSITO: Curt?

DR. KLAASSEN: I agree, I don’t think it needs to be in there.

DR. BELSITO: We’ll get rid of that. The only thing is the hydroxyurea issue?

DR. LIEBLER: Yes, I just mentioned -- I was just thinking, when I saw this hydroxyethyl urea, the first thing that popped into my head was hydroxyurea, which is a DNA synthesis inhibitor. I thought, uh oh. But then when I looked into the structure requirements for the hydroxyurea being a DNA synthesis inhibitor, I realized that this molecule is substantially different in a way that makes that not a concern.

I thought maybe either Ron Shank or Ron Hill might bring it up, and if he does we can discuss it. But I looked into the literature on it and I think we’re fine.

DR. BELSITO: Aerosol issues?

MS. FIUME: It’s five percent in spray, body, and hand formulations.

DR. BELSITO: So, respiratory boilerplate? That’s it. Anything else for the discussion?
DR. LIEBLER: I have nothing else. I have a few little edits.

DR. BELSITO: Let’s see if Paul had anything to say here. No, he just listed what was there.

DR. LIEBLER: I don’t think there are any issues — any real big issues with this one.

Day 1- Dr. Mark’s Team

DR. MARKS: This is a draft report. First time we’ve reviewed this ingredient. Incredibly, I think, this is the exception that we have one ingredient. And, Tom and Ron, we don’t have to discuss are the ingredients okay because we have one. We don’t have a choice on that. Do we have any needs, Tom, Ron, Ron, in terms of moving forward with either a tentative report or an insufficient data announcement?

DR. SHANK: No. I think we can go safe as used.

DR. MARKS: Safe? Yeah.

DR. SLAGA: All aspects are covered with data except for carcinogenicity, but we have sufficient irritation and genotox. I don’t think we need that.

DR. MARKS: Okay. So, from a carcinogenicity point of view, okay. Genotox point of view, Ron Hill,
irritation sensitization’s okay?

DR. HILL: I just made a note here, under needs, that we don’t have any true chronic toxicology data. And we have 20.6 percent in certain leave-ons. Almost 21 percent in certain leave-ons and really no true chronic tox data, so that bugged me.

DR. MARKS: What’d you say? The highest concentration is 20.6 percent is what I have.

DR. HILL: In leave-on.

DR. MARKS: Yeah. Ron Shank, you didn’t have problems as far as that need?

DR. HILL: We do have DART.

DR. SHANK: We have 90-day dermal tox at, what, 57 percent.

DR. HILL: Okay, I know what bothered me about that. It records that a statistically-significant increase in phosphorus and calcium were noted on day 90 in the males. And they wrote it off. What I wondered is when they did the pathology, did they include bone. Because when you’re seeing changes in calcium and phosphorus, that’s indicative that something might be going on with bone. And given the nature of this compound, that
concerned me a little.

DR. SHANK: It needs to say what tissue are they talking about for the increase in phosphorus and calcium. The report doesn’t say.

DR. HILL: Yeah. And then right below it has a section that says chronic toxicity studies. And it says no relevant published chronic tox studies were identified in a literature search. In the discussion we have to at least address -- two and three is ECHA summary. Over relying on that is a general concern I have, when we’re getting that essentially third had through the filterer. Same for NICNAS, and that’s number three.

DR. MARKS: Ron Hill, you have concerns about moving forward with a tentative report with a safe conclusion?

DR. HILL: Of course, Paul isn’t here, but I would have maybe asked him. And I didn’t notice this until traveling.

DR. MARKS: We’ll get Paul’s opinion tomorrow. From what I understand, he sent in notes. We’ll get that tomorrow. Ron Shank and Tom, we are going to be seconding it. You’ll get a glimpse of it before we have to totally
commit. But, Ron Shank and Tom, you don’t have a problem with the toxicity at this point? Is that correct?

DR. SHANK: Correct.

DR. MARKS: Okay. Presumably I’m going to be seconding a motion to issue a tentative report with a safe conclusion on this ingredient. Okay.

DR. BERGFELD: Jim, just a comment.

DR. MARKS: Sure.

DR. BERGFELD: You’re going with the animals irritation sensitization and not human?

DR. MARKS: Pardon? Oh, yeah.

DR. BERGFELD: Okay.

DR. MARKS: Yes.

DR. HILL: For me there’s no structure hits. That doesn’t mean it couldn’t happen, but I doubt it. If we didn’t have ample data, I would be very concerned.

DR. MARKS: I think if there was a series of case reports, or that sort of thing as an alert also; but with the sensitization data we have, I thought it was sufficient to move forward with a safe conclusion. Okay, any other comments, team?

DR. HILL: I mean, it is animal, so they did the
DART Study 90 days on dermal. We don’t always get that. We did have more dermal data than usual, which was helpful.

DR. MARKS: Okay. If no other comments, we’ll go ahead and move on to the next ingredient, or more likely ingredients.
Day 2

DR. BELSITO: This is the first time we’re looking at this ingredient. And we thought the data were sufficient to go ahead with a conclusion, safe as used when formulated to be nonirritating. Very important part of the discussion, Dan felt, was to point out that this is not hydroxyl urea; that it’s hydroxyethyl urea and has a very different mechanism of action, As some individuals may confuse this with the DNA symphysis inhibitor that’s used for medical purposes.

DR. MARKS: Second, but I just wanted a clarification why the irritation. In the irritation sensitization studies, I looked at, I didn’t flag that, but I just want to confirm.

DR. BELSITO: The guinea pig max sensitization was negative at 100 percent. But there was some back-and-forth data with irritation. I believe it was mainly when -- let me just look at my notes here, sorry -- test material less than 50 percent, hydroxyethyl urea. It was some irritation, it didn’t state at what level; very mild irritation to the skin. So, I just thought to be on the safe side to add that in.
DR. MARKS: Okay.

DR. BERGFELD: You’ll discuss that in the discussion?

DR. BELSITO: No.

DR. BERGFELD: Okay, well your data is a little weak, so maybe it should be discussed, slightly irritating.

DR. LIEBLER: Right below it, on the other animal study with the New Zealand white rabbit it said, that desquamation was also noted in two of six animals treated with the test substance. Dermatologist, please educate me, does that count?

DR. BERGFELD: Yes.

DR. BELSITO: No.

DR. LIEBLER: Desquamation? Okay.

DR. BERGFELD: Desquamation counts.

DR. BELSITO: No.

DR. MARKS: Yes.

DR. LIEBLER: Okay.

DR. MARKS: But it, you know, think of it in terms of irritation. Obviously, there weren’t any blistering sever irritation. Could be minor inflammation, irritation and then some desquamation after it. I mean, the most
common cause we see is sunburn after that, the desquamation.

DR. LIEBLER: Peeling.

DR. MARKS: Peeling, yes.

DR. LIEBLER: Okay. Thank you very much, for the rest of us.

DR. MARKS: I’m fine with that. I just wanted to clarify the irritation. It didn’t alert me but, Don, I’m perfectly fine being conservative and include that as an alert.

DR. BERGFELD: So, ready to move to question then?

No other comments? Ron Hill?

DR. HILL: Do we have a motion and second?

DR. BERGFELD: Yes.

DR. HILL: I raised the question yesterday and the toxicologist on the panel here sort of reassured me, but I just wanted to make sure. I noted that there’re really no true chronic toxicology studies, we have 90-day, we have a DART study, but it’s says it used up almost 21 percent in leave-on. And it was noted in one set of studies that there were changes in calcium and phosphorus levels, but I wasn’t clear whether it was coming in blood or urine, or
both. But that could speak to possible effects on something going on in bone, and I wanted to make sure that the pathology study.

So, I was hoping Paul of course would be here to see what his take on that was; whether they actually looked at bone effects, potentially, and their pathology studies in that particular case. It was a feed study if I remember, right, for 90 days and then they saw that effect. Or was it -- 90-day dermal? It’s right above the section that said there are no chronic tox data.

DR. BERGFEILD: Can that be clarified?

DR. HILL: But it had short-term tox and -- flag the calcium and phosphorus and said any, chances of something going on in bone.

DR. BERGFEILD: Perhaps the original article can be looked at and see if that can be clarified.

DR. HILL: You’re right.

DR. BERGFEILD: Okay. Any other questions? I’m going to call to question. All those in favor of this conclusion of safe with nonirritating? Unanimous. We’re done with the 14 ingredients. We’re moving on to Other Items, and the first one up is by Dr. Marks, the Starch
conclusion and summary.
Safety Assessment of Hydroxyethyl Urea
As Used in Cosmetics

Status: Draft Final Report for Panel Review
Release Date: November 9, 2018
Panel Meeting Date: December 3-4, 2018

The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Alice Akinsulie, Scientific Analyst/Writer.
ABSTRACT
The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of Hydroxyethyl Urea, which is reported to function as a humectant and a hair and skin conditioning agent. The Panel reviewed the available data to determine the safety of this ingredient. The Panel concluded that Hydroxyethyl Urea is safe in cosmetics in the present practices of use and concentration described in the safety assessment when formulated to be non-irritating.

INTRODUCTION
This is a review of the safety of Hydroxyethyl Urea as used in cosmetic formulations. According to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI; Dictionary), Hydroxyethyl Urea is reported to function as a humectant and hair- and skin-conditioning agent for use in cosmetic products.¹

This safety assessment includes relevant published and unpublished data that are available for each endpoint that is evaluated. Published data are identified by conducting an exhaustive search of the world’s literature. A listing of the search engines and websites that are used and the sources that are typically explored, as well as the endpoints that CIR typically evaluates, is provided on the CIR website (https://www.cir-safety.org/supplementaldoc/preliminary-search-engines-and-websites; https://www.cir-safety.org/supplementaldoc/cir-report-format-outline). Unpublished data are provided by the cosmetics industry, as well as by other interested parties.

Much of the data included in this safety assessment was obtained from the European Chemicals Agency (ECHA)² website and from the Australian Government Department of Health National Industrial Chemicals Notification and Assessment Scheme (NICNAS)³ hazard assessments. Both of these sources provide summaries of data generated by industry, and ECHA and NICNAS, respectively, are cited as the sources of the summary data in this safety assessment as appropriate.

CHEMISTRY
Definition and Structure
Hydroxyethyl Urea (CAS No. 2078-71-9;1320-51-0) is the organic compound that conforms to the structure in Figure 1.¹ Urea is the simplest diamide of carbonic acid. Hydroxyethyl Urea is a derivative of urea, singly substituted with 2-ethanol.

![Figure 1. Hydroxyethyl Urea](image)

Physical and Chemical Properties
Hydroxyethyl Urea is a low-molecular-weight, highly water-soluble, hygroscopic solid.³ Much of the currently available toxicity data on Hydroxyethyl Urea describe a tradename aqueous mixture containing up to 60% Hydroxyethyl Urea as the test article. Additional information on the physical and chemical properties is found in Table 1.

Method of Manufacture
Hydroxyethyl Urea is sold in an aqueous solution of about 50 - 60% to cosmetics finishing houses and is prepared by diluting the Hydroxyethyl Urea with water and neutralizing the excess ammonia generated with lactic acid. According to one raw material supplier, Hydroxyethyl Urea is manufactured by reacting ethanolamine with excess urea.² Specifically, 2-Hydroxyethyl Urea is made by the transamidation of urea with monoethanolamine. This is an equilibrium reaction with the product strongly favored. Ammonia and unreacted monoethanolamine are removed from the reaction by sparging with nitrogen. Lactic acid is added to neutralize any ammonia or monoethanolamine remaining in the product. The product also contains unreacted urea, which can decompose to ammonia and carbon dioxide. Carbon dioxide evolves from the product into the head space; ammonia remains in solution as ammonium lactate. Keeping the pH below 8.25 keeps more than 90% of the ammonia and ethanolamine ionized, preventing ammonolysis of Hydroxyethyl Urea.

Alternatively, Hydroxyethyl Urea could be synthesized via N-carbamoylation of ethanolamine with potassium cyanate.⁵
Impurities

The purity of the Hydroxyethyl Urea in the aqueous solution is likely > 90%.3 The following chemicals have been reported as possible impurities of Hydroxyethyl Urea: urea (< 3.0%), ethanolamine (< 0.5%), 2-oxazolidone (< 1.0%; cyclization product), N,N'-bis(2-hydroxyethylurea) (< 5.0 %), diethanolamine (residue from ethanolamine) (< 0.025%).4

USE

Cosmetic

The safety of the cosmetic ingredient addressed in this assessment is evaluated based on data received from the US Food and Drug Administration (FDA) and the cosmetics industry on the expected use of this ingredient in cosmetics. Use frequencies of individual ingredients in cosmetics are collected from manufacturers and reported by cosmetic product category in the FDA Voluntary Cosmetic Registration Program (VCRP) database. Use concentration data are submitted by the cosmetic industry in response to a survey, conducted by the Personal Care Products Council (Council), of maximum reported use concentrations by product category.

According to 2018 VCRP data, Hydroxyethyl Urea is reported to be used in a total of 641 cosmetic formulations; 432 of those uses are in rinse-off products, and the majority of those (407) are in bath soaps and detergents (Table 2).6 However, the results of the concentration of use survey conducted by the Council did not report any concentration of use data for the category of bath soaps and detergents. The survey indicated that Hydroxyethyl Urea is used at concentrations up to 20.6% in mostly leave-on products, with the greatest concentration reported for moisturizing products.7

Hydroxyethyl Urea is reported to be used in lipstick products at up to 0.009%; use in lipsticks can result in incidental ingestion.7 It is also used in cosmetic sprays and could possibly be inhaled; Hydroxyethyl Urea is reported to be used at 5% in spray body and hand product formulations. In practice, 95% to 99% of the droplets/particles released from cosmetic sprays have aerodynamic equivalent diameters > 10 µm, with propellant sprays yielding a greater fraction of droplets/particles < 10 µm compared with pump sprays.8,9 Therefore, most droplets/particles incidentally inhaled from cosmetic sprays would be deposited in the nasopharyngeal and thoracic regions of the respiratory tract and would not be respirable (i.e., they would not enter the lungs) to any appreciable amount.10,11

Based on the data from a tradename aqueous mixture containing < 50% Hydroxyethyl Urea as the test article, Hydroxyethyl Urea is not classified as hazardous according to Australia’s Approved Criteria for Classifying Hazardous Substances.5 Hydroxyethyl Urea is not restricted from use in any way under the rules governing cosmetic products in the European Union.12

Non-Cosmetic

Hydroxyethyl Urea has been approved for use as an indirect food additive for use only as a component of adhesives. (21 CFR 175.105)

TOXICOKINETIC STUDIES

Dermal Penetration

Hydroxyethyl Urea has a low molecular weight and high water solubility; therefore, dermal absorption may occur.3 However, based on the partition coefficient (log P ow estimated to be ~2.06), dermal absorption is expected to be limited.4 In the gastrointestinal tract, Hydroxyethyl Urea may pass through aqueous (aq.) pores or be carried through the epithelial barrier by the passage of water.

TOXICOLOGICAL STUDIES

Acute Toxicity Studies

Dermal

In an acute dermal toxicity study, occlusive patches of an aq. solution containing 57.58% Hydroxyethyl Urea were applied to 5 male and 5 female Sprague-Dawley rats in accord with Organization for Economic Co-operation and Development (OECD) test guideline (TG) 402.2 Thus, dermal administration of the test substance (formula) at 3473 mg/kg corresponded to a dose of 2000 mg/kg Hydroxyethyl Urea. Dermal irritation was noted at the site of test article application. Clinical observations included few feces, and dark materials were observed around the facial area. A slight body weight loss was recorded for 1 male and 1 female in the first week of observation. Because there were no deaths, the dermal LD₅₀ was reported as > 3473 mg/kg of the test material, corresponding to > 2000 mg/kg Hydroxyethyl Urea.
Oral

Groups of 5 male and 5 female Sprague-Dawley rats were dosed by gavage with 3473 mg/kg of an aq. solution containing 57.58% Hydroxyethyl Urea; this dose corresponded to 2000 mg/kg Hydroxyethyl Urea. Clinical observations included transient incidences of fecal stain, mucoid stools and dark material around the nose. The LD₅₀ of the aq. solution was > 3473 mg/kg, corresponding to > 2000 mg/kg Hydroxyethyl Urea.

Inhalation

In an acute study performed in accord with the Office of Prevention, Pesticides and Toxic Substances (OPPTS) protocol 870.1300 (Acute Inhalation Toxicity Limit Test), the inhalation toxicity of a tradename mixture containing approximately 50% Hydroxyethyl Urea (which corresponds to > 4 mg/L of Hydroxyethyl Urea) was studied in Sprague-Dawley rats. Groups of 5 male and 5 female rats were exposed nose-only for 4 hours. The test material was undiluted for groups 1 and 3 and mean aerosol mass concentrations were 0.59 mg/L for Group 1, and 0.125 mg/L for Group 3. For Group 2, the aerosol was a 1:1 dilution of the test material with water and the mean aerosol mass concentration was 5.152 mg/L. In each instance, test concentrations were based on the non-volatile fraction (i.e., 50% for the material tested as supplied; 25% for the test material that was diluted). The mean mass median aerodynamic diameters (MMAD) and geometric standard deviation for each exposure were: 1.06 µm ± 1.80 (Group 1); 1.63 µm ± 2.33 (Group 2); and 1.90 µm ± 2.87 (Group 3). There were no deaths reported during the exposure or observation period, however, animals from all groups had lungs with foci. Histopathologic evaluation of the lungs from two animals with lung foci in Group 2 showed no hemosiderophages in the lymph node of either animal. Since small foci of peracute hemorrhage in the lung are not rare in rodents, the lung foci found in animals from this study were not considered related to treatment with the test substance. With the exception of the observation of redness/red material around the nose, observations were determined not to be attributable to the test article. The LC₅₀ in rats was greater than > 5.152 mg/L/4 hours of the test material; this corresponds to > 4 mg/L Hydroxyethyl Urea.

Short-Term Toxicity Studies

No relevant published short-term toxicity studies on Hydroxyethyl Urea were identified in a literature search for this ingredient, and no unpublished data were submitted.

Subchronic Toxicity Studies

Dermal

In a 90-day dermal study using semi-occlusive patches, an aqueous solution containing 57.58% of Hydroxyethyl Urea (0, 100, 330, or 1000 mg/kg bw/day) was administered to groups of 10 male and 10 female Sprague-Dawley rats (6 h/day, 7 days/wk, in deionized water). Minor treatment-related dermal effects were observed during the study, including a dose-related increase in the incidence of focal/pinpoint eschar, desquamation and red pinpoint areas (a slightly higher incidence is noted in females). These were deemed to be superficial in nature. A statistically-significant increase in phosphorus (all test groups) and calcium (1000 mg/kg bw/day group) were noted in blood samples collected on day 90 in males. These finding were deemed to be possibly related to the test article, but not of biological significance; the changes in phosphorus and calcium levels were within the historical control range of the test facility. No effects on organ weights and no test article-related microscopic lesions were noted at necropsy. The no-observed-adverse-effect-level (NOAEL) was established as 1000 mg/kg bw/day, based on the absence of any toxicologically significant effects at this dose level.

Chronic Toxicity Studies

No relevant published chronic toxicity studies on Hydroxyethyl Urea were identified in a literature search for this ingredient, and no unpublished data were submitted.

DEVELOPMENTAL AND REPRODUCTIVE TOXICITY (DART) STUDIES

Dermal

The potential adverse effect of Hydroxyethyl Urea on developmental and reproductive functions was tested in 4 groups of 25 female Sprague-Dawley rats. An aqueous solution containing 57.58% Hydroxyethyl Urea was dermally applied using open applications of 0, 100, 330, and 1000 mg/kg bw/day in deionized water for 6 h/day on days 6 through 19 of gestation. Elizabethan collars were placed around the neck of each animal during the exposure period to minimize ingestion. None of the animals died during the study, however all females were euthanized on gestation day 20 and the neonates were examined for abnormalities. Mean feed consumption for females in the 1000 mg/kg bw/day group was statistically significantly lower than that of controls during the treatment period. However, there were no statistically significant differences in mean body weights or body weight gain between the control and test groups. No reproductive or development effects were observed. The NOAEL was established as 1000 mg/kg bw/day for both maternal and developmental toxicity.
GENOTOXICITY

In Vitro

An Ames test was conducted in accordance with OECD TG 471 using *Salmonella typhimurium* (TA1535, TA1537, TA98, TA100) and *Escherichia coli* (WP2uvrA) to evaluate the mutagenicity of an aq. solution containing 57.58% Hydroxyethyl Urea. Doses of 75 - 5000 µg/plate were tested with and without metabolic activation. Dosage was adjusted for the purity of the aqueous solution containing Hydroxyethyl Urea (57.58%). In the initial toxicity mutation assay, the maximum dose tested was 5000 µg per plate; this dose was achieved using a concentration of 50 mg/mL and of the test article. All dose levels of test article, vehicle controls and positive controls were plated in triplicate. The test article was not mutagenic under the conditions of the test.

In Vivo

A mammalian micronucleus test of an aq. solution containing 57.58% Hydroxyethyl Urea was performed in Crl:CD-1 (ICR) BR mice in accordance with OECD TG 474. Groups of 6 male mice were dosed by gavage with 0, 500, 1000 and 2000 mg/kg bw of the test substance in deionized water, and the animals were killed 24 h after dosing. A second group of 6 males was dosed with 2000 mg/kg bw of the test substance and killed 48 h after dosing. No clinical signs of toxicity were observed at any dose level. A statistically significant increase in micronucleated polychromatic erythrocytes (PCEs) was not observed for any group. As expected, the positive control (cyclophosphamide) induced a statistically significant increase in micronucleated PCEs.

CARCINOGENICITY STUDIES

No relevant published carcinogenicity studies on Hydroxyethyl Urea were identified in a literature search for this ingredient, and no unpublished data were submitted.

DERMAL IRRITATION AND SENSITIZATION

In Vitro

In an EpiDerm™ study, tissue samples were exposed to 100 µL of a test material containing ≤ 50% Hydroxyethyl Urea (actual concentration not specified) for 1, 4, and 24 h. Each treatment was conducted in duplicate. Following the treatment, a negative control (1% octoxinol; an ethoxylated alkyl phenol) was performed in duplicate for the 4 and 24 h exposure times. The ET₅₀ (the time at which the EpiDerm™ tissue viability was reduced 50% compared to control tissues) was determined to be 12.1 h. The test substance is expected to be very mildly irritating to the skin.

Animal

The dermal irritation potential of an aq. solution containing 57.58% Hydroxyethyl Urea was evaluated using 6 male New Zealand white rabbits. Occlusive patches containing 0.5 mL of the test material (at 52% and undiluted) were applied for 24 h to one intact and one abraded site (i.e. total of four test sites). The skin surface area treated per site was approximately 6.5 cm². Slight erythema and edema were reported. Desquamation was also noted in 2/6 animals treated with 100% test substance at abraded sites. All reactions were fully reversible within 10 days. The test substance was slightly irritating to the skin.

Sensitization

Animal

The dermal sensitization potential of an aq. solution containing 57.58% Hydroxyethyl Urea was evaluated in Hartley-derived albino guinea pigs. Ten male and ten female guinea pigs received 0.1 ml intradermal injections of the test material at a concentration of 5% in deionized water, 5.0% test material and Freund’s complete adjuvant (FCA), and FCA only. One week later, a topical induction application of 0.8 ml neat test material was applied for 48 hours. After a 2 week non-treatment period, animals were challenged with a 24 hours exposure to 0.3 ml of Hydroxyethyl Urea, applied neat; the challenge sites were pretreated with sodium lauryl sulfate. A control group of 5 male and 5 female guinea pigs were exposed to deionized water during induction and the test material at challenge. No reactions were observed; the test material was not a sensitizer. A historical study using alpha-hexylcinnamaldehyde served as the positive control.
OCULAR IRRITATION STUDIES

Animal

The potential ocular irritation of an aq. solution containing 57.58% Hydroxyethyl Urea was evaluated by instilling 0.1 ml of the test material into the conjunctival sac of one eye of 3 male and 3 female New Zealand White rabbits, in accord with OECD TG 405 (Acute Eye Irritation/Corrosion). Iritis was noted in 3/6 animals at the 1 hour scoring interval, which resolved completely in all test eyes by the 48 hour scoring interval. Conjunctivitis was noted in 6/6 animals at the 1 hour scoring interval. The conjunctival irritation was resolved completely in all test eyes by study day 7. The test substance was classified as slightly irritating to the eye.

SUMMARY

This is a review of the safety of Hydroxyethyl Urea as used in cosmetics. According to the Dictionary, this ingredient is reported to function in cosmetics as a humectant and a hair and skin conditioning agent. Based on 2018 VCRP data, Hydroxyethyl Urea is used in a total of 641 cosmetic formulations, the majority (407) of which are in are in bath soaps and detergent products. The results of the concentration of use survey conducted in 2017 by the Council did not report any concentration of use data for the category of bath soaps and detergents. The survey indicated that Hydroxyethyl Urea is used at concentrations up to 20.6% in mostly leave-on products, with the greatest concentration reported for moisturizing products.

Given the low molecular weight and high water solubility (> 699 g/L) of Hydroxyethyl Urea, dermal absorption may occur. However, dermal absorption is expected to be limited, based on the partition coefficient (log P_{ow} estimated to be -2.06).

The acute dermal and oral LD₅₀s of an aq. solution containing 57.58% Hydroxyethyl Urea were both > 2000 mg/kg. The LC₅₀ of a mixture that contained approximately 50% Hydroxyethyl Urea was > 5.152 mg/L in male and female rats; this was calculated as corresponding to > 4 mg/l Hydroxyethyl Urea. In a 90-day dermal toxicity study with semi-occlusive patches of an aq. solution containing 57.58% Hydroxyethyl Urea in rats, the NOAEL was 1000 mg/kg bw/day.

In a dermal developmental toxicity study, open applications of an aq. solution containing 57.58% Hydroxyethyl Urea were tested on 4 groups of 25 female Sprague-Dawley rats on days 6 through 19 of gestation. A dosage level of 1000 mg/kg/day was considered to be the NOAEL for maternity and developmental toxicity. No reproductive or developmental effects were observed.

The genotoxic potential of Hydroxyethyl Urea (75 - 5000 µg/plate) was evaluated in an Ames test using S. typhimurium (TA1535, TA1537, TA98, TA100) and E. coli (WP2uvrA). Hydroxyethyl Urea was not mutagenic to bacteria under the conditions of the test. Hydroxyethyl Urea also was not genotoxic in a micronucleus study in which mice were given a single dose by gavage of up to 2000 mg/kg of an aq. solution containing 57.58% Hydroxyethyl Urea.

Based on the results of an EpiDermTM study, tissue samples exposed to 100 µL of a test material containing ≤ 50% Hydroxyethyl Urea is expected to be mildly irritating to skin. An aq. solution containing 57.58% Hydroxyethyl Urea (tested at 52% and undiluted) was slightly irritating to rabbit skin. In a sensitization study in which guinea pigs were induced with intradermal injections of 5.0% Hydroxyethyl Urea and topical application of undiluted Hydroxyethyl Urea, and challenged with undiluted test material, no reactions were observed and the test material was not a sensitizer.

In an ocular irritation study, an aq. solution containing 57.58% Hydroxyethyl Urea was instilled into the sac of one eye of 3 male and 3 female New Zealand White rabbits. The test material was slightly irritating to rabbit eyes.

DISCUSSION

The Panel determined that the available genotoxicity, dermal, inhalation, and reproductive/developmental toxicity data were sufficient to issue the conclusion that Hydroxyethyl Urea is safe in the present practices of use and concentration described in this report when formulated to be non-irritating. The overall favorable safety profile and low dermal toxicity mitigated concern about systemic effects from dermal penetration.

Carcinogenicity data are lacking. However, because the genotoxicity studies were negative and there are no structural alerts, the Panel was not concerned that Hydroxyethyl Urea had carcinogenic potential.

The Panel noted Hydroxyethyl Urea was slightly irritating to rabbit skin. Because the potential exists for dermal irritation with the use of products formulated using Hydroxyethyl Urea, the Panel specified that products containing Hydroxyethyl Urea must be formulated to be non-irritating.

Hydroxyethyl Urea is used in body and hand product formulations that are sprayed at a concentration of 5%, and could possibly be inhaled. Thus, the Panel discussed the issue of potential inhalation toxicity. The available inhalation data suggest little potential for respiratory effects at relevant doses. The Panel noted that in aerosol products, 95% – 99% of droplets/particles would not be respirable to any appreciable amount. Furthermore, droplets/particles deposited in the nasopharyngeal or bronchial regions of the respiratory tract present no toxicological concerns based on the chemical and biological properties of these ingredients. Coupled with the small actual exposure in the breathing zone and the
concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects. A detailed discussion and summary of the Panel’s approach to evaluating incidental inhalation exposures to ingredients in cosmetic products is available at https://www.cir-safety.org/cir-findings.

Finally, the Panel discussed the similarity between hydroxyurea (a DNA synthesis inhibitor that acts by inhibiting ribonucleotide reductase) and Hydroxyethyl Urea. Despite the similarity in structure, Hydroxyethyl Urea lacks the key structural feature (i.e., N-OH group) required for this inhibition.

CONCLUSION

The Panel concluded that Hydroxyethyl Urea is safe in cosmetics in the present practices of use and concentration described in this safety assessment when formulated to be non-irritating.
TABLES

Table 1. Physical and chemical properties of Hydroxyethyl Urea

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Form</td>
<td>Solid</td>
<td>3</td>
</tr>
<tr>
<td>Color</td>
<td>Light yellow</td>
<td>3</td>
</tr>
<tr>
<td>Molecular Weight (Da)</td>
<td>104.11</td>
<td>3</td>
</tr>
<tr>
<td>Density/ Specific Gravity</td>
<td>1.36</td>
<td>3</td>
</tr>
<tr>
<td>Vapor Pressure (mm Hg @ 25°C)</td>
<td>0.00021</td>
<td></td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>94 - 95</td>
<td>3</td>
</tr>
<tr>
<td>Boiling Point (°C @ 772 mm Hg)</td>
<td>150 (decomposed)</td>
<td></td>
</tr>
<tr>
<td>Water Solubility (g/l @ 20°C)</td>
<td>699</td>
<td>3</td>
</tr>
<tr>
<td>Log P ow</td>
<td>-2.06</td>
<td>4</td>
</tr>
<tr>
<td>Disassociation constants (at) 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pKa – 1 (N-H)</td>
<td>14.72 est.</td>
<td>13</td>
</tr>
<tr>
<td>pKa – 2 (O-H)</td>
<td>14.83 est.</td>
<td>13</td>
</tr>
<tr>
<td>pKa – 3 (N-H)</td>
<td>16.20 est.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Frequency and concentration of use according to duration and exposure

<table>
<thead>
<tr>
<th>Total# of Uses</th>
<th>Max Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>641</td>
<td>0.00046 – 20.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of Use</th>
<th># of Uses</th>
<th>Max Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave-On</td>
<td>209</td>
<td>0.00046 – 20.6%</td>
</tr>
<tr>
<td>Rinse-Off</td>
<td>432</td>
<td>NR</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposure Type</th>
<th># of Uses</th>
<th>Max Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Area</td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>2</td>
<td>0.009</td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td>13; 106<sup>b</sup>; 46<sup>b</sup></td>
<td>5; 0.5-2.5<sup>a</sup></td>
</tr>
<tr>
<td>Incidental Inhalation-Powder</td>
<td>13; 46<sup>b</sup></td>
<td>0.0091-5<sup>c</sup></td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>622</td>
<td>0.00046-20.6%</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>0.00046</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>16</td>
<td>0.25-2%</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>1</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>413</td>
<td>0.009</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

^a Because an ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

^b Includes products that can be sprays, but it is not known whether the reported uses are sprays

^c Not specified whether this product is a spray or a powder or neither, but it is possible it may be a spray or a powder, so this information is captured for both categories of incidental inhalation

^d Includes products that can be powders, but it is not known whether the reported uses are powders

NR – no reported use
REFERENCES

2018 FDA VCRP Data

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>CAS #</th>
<th>MAINTERM</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>03D - Eye Lotion</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>5</td>
</tr>
<tr>
<td>04A - Cologne and Toilet waters</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>04E - Other Fragrance Preparation</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>12</td>
</tr>
<tr>
<td>05A - Hair Conditioner</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>05F - Shampoos (non-coloring)</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>2</td>
</tr>
<tr>
<td>05G - Tonics, Dressings, and Other Hair Grooming Aids</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>6</td>
</tr>
<tr>
<td>05I - Other Hair Preparations</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>7</td>
</tr>
<tr>
<td>07A - Blushers (all types)</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>07B - Face Powders</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>13</td>
</tr>
<tr>
<td>07C - Foundations</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>2</td>
</tr>
<tr>
<td>07E - Lipstick</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>2</td>
</tr>
<tr>
<td>07I - Other Makeup Preparations</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>2</td>
</tr>
<tr>
<td>08G - Other Manicuring Preparations</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>10A - Bath Soaps and Detergents</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>407</td>
</tr>
<tr>
<td>10E - Other Personal Cleanliness Products</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>4</td>
</tr>
<tr>
<td>11A - Aftershave Lotion</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>2</td>
</tr>
<tr>
<td>11E - Shaving Cream</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>3</td>
</tr>
<tr>
<td>11G - Other Shaving Preparation Products</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>7</td>
</tr>
<tr>
<td>12A - Cleansing</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>3</td>
</tr>
<tr>
<td>12C - Face and Neck (exc shave)</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>28</td>
</tr>
<tr>
<td>12D - Body and Hand (exc shave)</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>17</td>
</tr>
<tr>
<td>12E - Foot Powders and Sprays</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>12F - Moisturizing</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>87</td>
</tr>
<tr>
<td>12G - Night</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>11</td>
</tr>
<tr>
<td>12H - Paste Masks (mud packs)</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>5</td>
</tr>
<tr>
<td>12I - Skin Fresheners</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>12J - Other Skin Care Preps</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>9</td>
</tr>
<tr>
<td>13A - Suntan Gels, Creams, and Liquids</td>
<td>1320510</td>
<td>HYDROXYETHYL UREA</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>641</td>
</tr>
</tbody>
</table>
Memorandum

TO: Bart Heldreth, Ph.D.
Executive Director - Cosmetic Ingredient Review (CIR)

FROM: Alexandra Kowcz, MS, MBA
Industry Liaison to the CIR Expert Panel

DATE: September 18, 2018

SUBJECT: Draft Report: Safety Assessment of Hydroxyethyl Urea as Used in Cosmetics
(draft prepared for the September 24-25, 2018 CIR Expert Panel meeting)

The Council respectfully submits the following comments on the draft report, Safety Assessment of Hydroxyethyl Urea as Used in Cosmetics.

CIR History, June, 2017 - “Hydrogen Peroxide” needs to be corrected to “Hydroxyethyl Urea”
Data Profile - As there is a dermal developmental toxicity study in rats, an “x” needs to be placed in the Repro/Dev Tox column of the data profile.
Impurities - The “%” is missing after (<5.0) (N,N’-bis(2-hydroxyethylurea)
Acute, Inhalation - It does not make sense that Group 3, exposed to diluted Hydroxyethyl Urea was exposed to a higher air concentration of Hydroxyethyl Urea. NICNAS states that the exposure concentrations were 0.59 mg/L for group 1; 5.152 mg/L for group 2; and 0.132 mg/L for group 3. In contrast the CIR report says: 0.59 mg/L for group 1; 0.125 mg/L for group 2 and 5.152 mg/L for group 3.
Summary - Please state the species used in the developmental toxicity study.
Memorandum

TO: Bart Heldreth, Ph.D.
Executive Director - Cosmetic Ingredient Review (CIR)

FROM: Alexandra Kowcz, MS, MBA
Industry Liaison to the CIR Expert Panel

DATE: October 12, 2018

SUBJECT: Tentative Report: Safety Assessment of Hydroxyethyl Urea as Used in Cosmetics (posted October 5, 2018)

The Council respectfully submits the following comments on the tentative report, Safety Assessment of Hydroxyethyl Urea as Used in Cosmetics.

Cosmetic Use; Summary - Stating that the Council reported only “leave-on uses” is misleading. Council concentration of use surveys are presented by FDA cosmetic product categories. These product categories are then classified by CIR staff into the rinse-off and leave-on categories.

Cosmetic Use - Australia’s lack of hazard classification of Hydroxyethyl Urea is not appropriate for the cosmetic use section. This lack of hazard classification also appears to be cited to the wrong reference (reference 3; STD/1365). The reference (STD/1365) actually has a conclusion for personal care products that could be added to the CIR report. NICNAS calculated exposure to Hydroxyethyl Urea used at 8% in 3 leave-on products and 6 rinse-off products used at the same time. Based on this exposure estimate, they concluded that “risk to the public associated with use of the notified chemical [Hydroxyethyl Urea] at up to 8% in rinse-off and leave-on cosmetic products is not considered to be unacceptable.”

Subchronic, Dermal - It would be helpful to state the medium, e.g., serum, in which phosphorus and calcium were measured.

DART, Dermal - Please state when relative to gestation the dams were euthanized and the offspring examined.